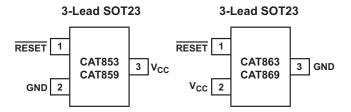


CAT853, CAT863 CAT859, CAT869

3-Pin Microprocessor Power Supply Supervisors


FEATURES

- Precision monitoring of +3.3V (-5%, -10%), 5V (-10% Power Supplies)
- Active low reset output
- Reset valid down to V_{CC} = 1.0V
- 6µA power supply current
- Power supply transient immunity
- Industrial temperature range: -40°C to +85°C
- RoHS-compliant SOT-23 package

APPLICATIONS

- Computers
- Servers
- Laptops
- Cable modems
- Wireless communications
- Embedded control systems
- White goods
- Power meters
- Intelligent instruments
- PDAs and handheld equipment

PIN CONFIGURATION

DESCRIPTION

The CAT853, CAT863, CAT859, and CAT869 are supervisory circuits that monitor power supplies in digital systems.

These devices generate a reset signal, which is asserted while the power supply voltage is below a preset threshold level and for at least 140 ms after the power supply level has risen above that level. Industry standard threshold levels are offered to support +3.3V or 5.0V systems.

The CAT859 and CAT869 feature a RESET push-pull output (active low) for the two pinout options.

The CAT853 and CAT863 feature an open drain RESET output (active low). Both require a pull-up resistor on the RESET output.

Fast transients on the power supply are ignored and the output is guaranteed to be in the correct state at $\rm V_{cc}$ levels as low as 1.0V.

For Ordering Information details, see page 8.

THRESHOLD SUFFIX SELECTOR

Nominal Threshold Voltage	Threshold Suffix Designation	
3.08V	Т	
2.93V	S	
4.38V	М	

PIN DESCRIPTIONS

Name	Description
RESET	Active low reset. $\overrightarrow{\text{RESET}}$ is asserted if V _{CC} falls below the reset threshold and remains low for at least
	140ms after V _{CC} rises above the reset threshold.
GND	Ground
V _{CC}	Power supply voltage that is monitored.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Any pin with respect to ground	-0.3V to +6.0V
Input Current, V _{CC}	20mA
Output Current, RESET	20mA
Rate of Rise, V _{CC}	100V/µs
Continuous Power Dissipation	
Derate 4mW/°C above 70°C (SOT23)	320 mW
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +105°C
Lead Soldering Temperature (10 sec)	300°C

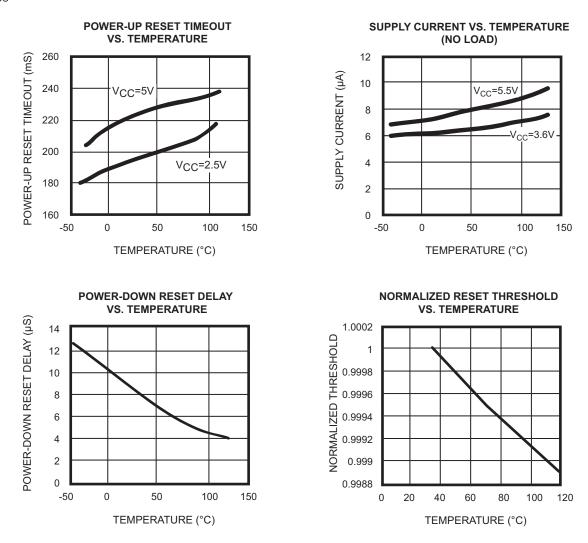
Note:

(1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

ELECTRICAL CHARACTERISTICS

 V_{CC} = Full range, T_A = -40°C to +85°C unless otherwise noted. Typical values at T_A = +25°C and V_{CC} = 3.3V for the T/S versions, V_{CC} = 5V for the M version.

Parameter	Symbol	Conditions		Min	Typ ⁽¹⁾	Max	Units
V _{CC} Range		$T_A = 0^{\circ}C$ to +70°C		1.0		5.5	V
		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		1.2		5.5	
Supply Current	I _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	V _{CC} < 3.6V, S/T		6	15	μA
Reset	V _{TH}	TThreehold	T _A = +25°C	3.04	3.08	3.11	V
Threshold Voltage		T Threshold	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	3.00		3.15	
renage		S Throphold	T _A = +25°C	2.89	2.93	2.96	
		S Threshold	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	2.85		3.00	
		M Threshold	T _A = +25°C	4.31	4.38	4.45	
			$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	4.25		4.50	
Reset Threshold Tempco					30		ppm/°C
V _{CC} to Reset Delay		$V_{CC} = V_{TH}$ to (V_{TH} - 100 mV)			20		μs
Reset Active Timeout Period		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		140	240	460	ms
RESET Output	V _{OL}	$V_{CC} = V_{TH} \min, I_{SINK} =$: 1.2mA			0.4	v
Voltage Low		V _{CC} > 1.0V, I _{SINK} = 50	μΑ			0.3	
RESET Output Voltage High	V _{OH}	$V_{CC} = V_{TH} \text{ max}, I_{SOURCE} = -500 \mu \text{A}$ (for CAT859/869 only)		0.8 V _{CC}			V


Note:

(1) Production testing done at $T_A = +25^{\circ}$ C; limits over temperature guaranteed by design only.

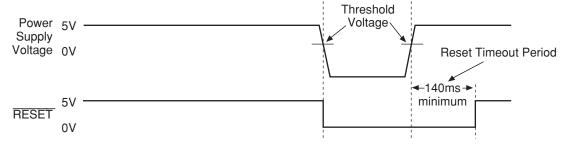
TYPICAL OPERATING CHARACTERISTICS

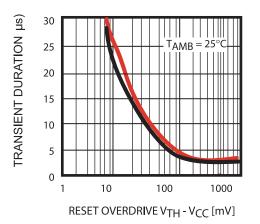
 V_{CC} = Full range, T_A = -40°C to +85°C unless otherwise noted. Typical values at T_A = +25°C, V_{CC} =3.3V for T/S versions, and V_{CC} = 5V for the M version.

DETAILED DESCRIPTIONS

RESET TIMING

The reset signal is asserted low for the CAT853, CAT863, CAT859, and CAT869 when the power supply voltage falls below the threshold trip voltage and remains asserted for at least 140ms after the power supply voltage has risen above the threshold.




Figure 1. Reset Timing Diagram

V_{CC} TRANSIENT RESPONSE

The CAT853, CAT863, CAT859, and CAT869 protect μ Ps against brownout failure. Short duration transients of 4 μ sec or less and 100mV amplitude typically do not cause a false RESET.

Figure 2 shows the maximum pulse duration of negative-going $V_{\rm CC}$ transients that do not cause a reset condition.

As the amplitude of the transient goes further below the threshold (increasing $V_{TH} - V_{CC}$), the maximum pulse duration decreases. In this test, the V_{CC} starts from an initial voltage of 0.5V above the threshold and drops below it by the amplitude of the overdrive voltage ($V_{TH} - V_{CC}$).

VALID RESET WITH V_{CC} UNDER 1.0V

To ensure that the CAT859 and CAT869 $\overline{\text{RESET}}$ pin is in a known state when V_{CC} is under 1.0V, a >10k Ω pull-down resistor between RESET pin and GND is recommended.

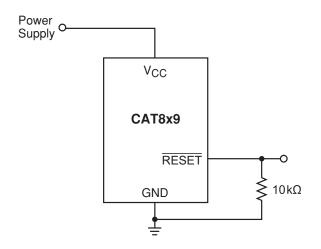


Figure 3. RESET Valid with V_{cc} Under 1.0V

BI-DIRECTIONAL RESET PIN INTERFACING

The CAT859 and CAT869 can interface with $\mu P/\mu C$ bi-directional reset pins by connecting a 4.7k Ω resistor in series with the CAT859 and CAT869 reset output and the $\mu P/\mu C$ bi-directional reset pin.

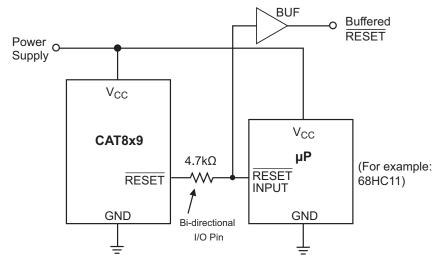
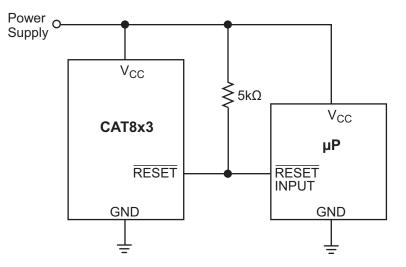
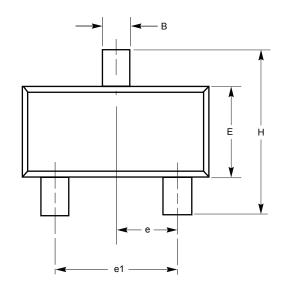
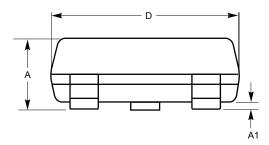


Figure 4. Bi-directional Reset Pin Interfacing

CAT853 AND CAT863 OPEN-DRAIN RESET APPLICATION

The CAT853 and CAT863 features an open-drain RESET output and therefore need a pull-up resistor on the output for proper operation, as shown on Figure 5. An advantage of the open-drain output includes the ability to "wire AND" several outputs together to form an inexpensive logic circuit. It is also possible to have the pull-up resistor connected to a different supply which can be higher than the CAT8x3 V_{CC} pin. The value of the pull-up resistor is not critical in most applications, typical values being between $5k\Omega$ and $10k\Omega$.


Figure 5. Typical CAT8x3 Open-Drain Circuit Configuration

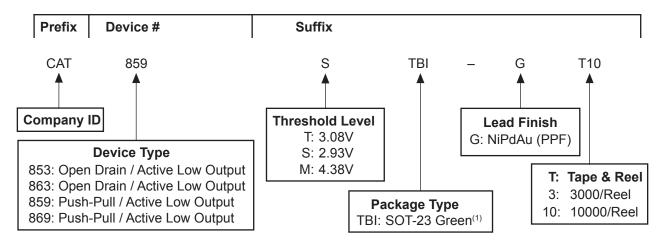
PACKAGE INFORMATION

Plastic SOT-23 (3-Pin)

c V	E	
		→ → → ↔

	Inc	hes	Millim	neters		
	Min	Мах	Min	Max		
	Plastic SOT-23 (3-Pin)					
Α	0.0350	0.0441	0.89	1.12		
A1	0.0005	0.0039	0.013	0.10		
В	0.0146	0.0197	0.37	0.50		
с	0.0033	0.0071	0.085	0.18		
D	0.1102	0.1197	2.80	3.04		
E	0.0472	0.0551	1.20	1.40		
е	0.0350	0.0406	0.89	1.03		
e1	0.0701	0.0807	1.78	2.05		
Н	0.0827	0.1039	2.10	2.64		
θ	0°	8°	0°	8°		
L	0.0083	0.0161	0.275	0.41		
L1	0.0160	0.0270	0.275	0.685		

For current Tape and Reel information, download the PDF file from: www.catsemi.com/documents/tapeandreel.pdf


Notes:

(1) This part is compliant with JEDEC specification TO-236

(2) Die is face up for mold and trim/form

(3) Dimensions are exclusive of mold flash and metal burr

EXAMPLE OF ORDERING INFORMATION (1) (2) (3)

TOP MARKING

Part and Threshold	SOT-23 RoHS NiPdAu Finish ^{(4) (5)}	Part and Threshold	SOT-23 RoHS NiPdAu Finish ^{(4) (5)}
CAT859T		CAT853T	
CAT859S	RSYM	CAT853S	RUYM
CAT859M		CAT853M	
CAT869T		CAT863T	
CAT869S	RTYM	CAT863S	RVYM
CAT869M		CAT863M	

ORDERING PART NUMBER

CAT859TTBI-G
CAT859STBI-G
CAT859MTBI-G ⁽⁶⁾
CAT869TTBI-G
CAT869STBI-G
CAT869MTBI-G ⁽⁶⁾
CAT853TTBI-G
CAT853STBI-G ⁽⁶⁾
CAT853MTBI-G
CAT863TTBI-G
CAT863STBI-G ⁽⁶⁾
CAT863MTBI-G

Notes:

- (1) All packages are RoHS-compliant (Lead-free, Halogen-free).
- (2) The device used in the example above is a CAT859STBI-GT10 (Push-Pull / Active Low Output, trip level of 2.85V to 3.00V NiPdAu, Tape and Reel).
- (3) For additional package and temperature options, please contact your nearest Catalyst Semiconductor Sales office.
- (4) The "YM" in the SOT-23 package marking indicates the Year and Month of production.
- (5) All NiPdAu devices will be marked to indicate product type. Threshold and full part numbers will be provided on box and reel labels as well as all Shipping documents.
- (6) For special threshold and package categories, contact factory.

REVISION HISTORY

Date	Rev.	Reason		
10/11/2006	A	Initial Issue CAT859, CAT869		
05/04/2007	В	Added CAT853, CAT863 Update Example of Ordering Information Update Top Marking Update Ordering Part Number		

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

Beyond Memory[™], DPP [™], EZDim[™], LDD[™], MiniPot[™] and Quad Mode[™]

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 2975 Stender Way Santa Clara, CA 95054 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Document No: 3026 Revision: B Issue date: 05/04/07